報告題目:廣義Sine-Gordon方程的可積半離散化
Integrable semi-discretization for a generalized sine-Gordonequation
報告時間:2018年11月20日10:30-11:30
報告地點:必一体育平台二樓會議室
報告人🈺:虞國富教授
報告人簡介:虞國富教授👓,2007年6月博士畢業於中國科必一數學與系統科學研究院; 加拿大蒙特利爾大學博士後。現為上海交通大學數學科學必一教授、博士生導師。主要從事孤立子與可積系統、特殊函數、正交多項式方面的研究。在國外重要學術刊物上發表SCI論文30余篇。主持國家自然科學基金、上海市晨光計劃🚼、上海交通大學晨星青年學者獎勵計劃等多項研究課題。應邀多次訪問香港科技大學、香港浸會大學。
報告摘要:
In this talk, two integrable and one non-integrable semi-discrete analoguesof a generalized sine-Gordon (sG) equation are constructed. The key of theconstruction is the bilinear forms and determinant structure of solutions ofthe generalized sG equation. We also construct N-soliton solutions for the semi-discrete analogues of the generalized sGequation in the form of Casorati determinant. In the continuous limit, we show that the semi-discrete generalized sG equations converge to the continuousgeneralized sG equation. Numerical simulation is conducted by use of the resulted semi-discreteschemes. The work is collaborated with Bao-Feng Feng.