報告題目:Relating the total domination number and the annihilation number of some graphs
報告時間:2021 年 11 月 02 日(星期二)上午 09: 00
騰訊會議:548590295
報告摘要:The total domination number $\gamma_{t}(G)$ of a graph $G$ is the cardinality of a smallest vertex subset $D $ of $V(G)$ such that each vertex of $G$ has at least one neighbor in $D$. The annihilation number $a(G)$ of $G$ is the largest integer $k$ such that there exist $k$ different vertices in $G$ with degree sum of at most the size of $G$. It is conjectured by W. J. Desormeaux et al. that $\gamma_{t}(G)\leq a(G)+1$ holds for every nontrivial connected graph $G$. The conjecture has been proved for graphs with minimum degree at least 3, trees, tree-like graphs, block graphs and cacti. In this talk, we introduce some of our results on the above conjecture.
報告人簡介:華洪波,博士,博士後,淮陰工必一教授👩🏽🦲,碩士生導師,校學術委員會委員,數學學科負責人。先後被遴選為江蘇省“青藍工程”優秀青年骨幹教師培養對象, 淮安市“533”人才工程拔尖人才培養對象及江蘇省“青藍工程”中青年學術帶頭人培養對象。目前擔任中國工業與應用數學學會圖論組合及應用專業委員會委員♊️。先後主持國家自然科學基金面上項目2項,主持完成江蘇省高校自然科學基金面上項目及中國博士後科學基金面上項目各1項👱🏻♂️,參與完成國家自然科學基金2項及省基金1項👩🏻🌾。迄今為止,共發表SCI論文60余篇。
歡迎老師和同學們參加!